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SUMMARY

After the detonation of a solid high explosive, the material has extremely high pressure keeping the
solid density and expands rapidly driving strong shock wave. In order to simulate this blast wave, a
stable and accurate numerical scheme is required due to large density and pressure changes in time and
space. The compressible �uid equations are solved by a fractional step procedure which consists of the
advection phase and non-advection phase. The former employs the Rational function CIP scheme in
order to preserve monotone signals, and the latter is solved by interpolated di�erential operator scheme
for achieving the accurate calculation. The procedure is categorized into the fractionally stepped semi-
Lagrangian. The accuracy of our scheme is con�rmed by checking the one-dimensional plane shock
tube problem with 103 times initial density and pressure jump in comparison with the analytic solution.
The Sedov–Taylor blast wave problem is also examined in the two-dimensional cylindrical coordinate
in order to check the spherical symmetry and the convergence rates. Two- and three-dimensional simu-
lations for the blast waves from the explosion in the underground magazine are carried out. It is found
that the numerical results show quantitatively good agreement with the experimental data. Copyright ?
2006 John Wiley & Sons, Ltd.

KEY WORDS: interpolated di�erential operator scheme; rational function CIP method; blast wave;
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1. INTRODUCTION

Explosives are very dangerous materials because enormous energy is released at the moment
through detonation process. When the detonation process terminated in solid explosives, the
pressure reaches tens of thousands times the air and the solid density still remains. The
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detonation product becomes the gas and expands rapidly driving strong shock wave. They are
called blast waves. It is noticed that the phenomena is associated with density and pressure
changing drastically in time and space. From the view point of safety study, it is very important
to estimate damages by blast waves. However, experiments are costly and accompany with
many dangers so that numerical simulation is strongly required.
For many years, many sophisticated numerical schemes have been developed in conserva-

tive form, for example FCT [1], approximate Riemann solvers [2], TVD [3, 4], ENO [5–8],
PPM [9, 10] and others, where successfully good results for shock waves have been achieved
and the basic research on blast waves [11–17] have been done. The non-conservative schemes
accept more �exible forms for additional terms in the equations, for example chemical reac-
tions, phase changes and so on. However, few non-conservative schemes can give quantitative
estimation for wide calculation scales. In the early stage of the blast wave propagation, the
large density jump between the detonation product gas and the air makes the numerical sim-
ulation di�cult. In the neighbourhood of the contact discontinuity, only 0.1% error of the
density of the detonation product gas becomes comparable to the air density. In order to
study such blast waves, a stable and accurate numerical scheme have to be developed.
In the next section, the governing equations and the numerical scheme is described in the

non-conservative form. We apply our simulation code to the one-dimensional plane shock tube
problem with 103 times the initial density and pressure jump in order to compare with the
analytic solution. The one-dimensional spherical explosion into free air is also examined to
discuss long-distance shock propagation. The Sedov–Taylor self-similar solution of the blast
wave is compared with the numerical result in the two-dimensional cylindrical geometry and
the convergence rate and the spherical symmetry are checked. We carry out two- and three-
dimensional simulations for the blast waves driven by the explosion in the magazine and we
discuss the numerical results in comparison with the experimental data. In the �nal section,
some concluding remarks are given.

2. GOVERNING EQUATIONS

The inviscid compressible �uid equations are employed for the blast waves of the detonation
product gas expanding rapidly and the strong shock wave propagating into the air. For the
detonation product gas, the JWL equation of state PJWL(�; e) [18] is applied, and the ideal
gas equation of state Pair = (�−1)�e is used for the air with the ratio of speci�c heat �=1:4.
In the following equations, the notation � is the density, e is the internal energy and u is the
velocity, where u; v and w are the components of u in the x, y and z direction, respectively.
In order to identify the region of the detonation product gas, we introduce a volume fraction
� which is taking a value 06�61. The region occupied by only the detonation product gas
is indicated by �=1 and the region for only the air is �=0. The pressure of the mixed
region is simply determined by p= �PJWL + (1− �)Pair. This simple mixture EOS might not
be applicable to the phenomena including such chemical reactions as detonation process. We
can introduce better mixture model [19, 20] to our scheme, however the choice of the mixture
EOS model is not sensitive to the blast wave propagation.

@�
@t
+ (u · ∇)�= − �∇ · u (1)
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@u
@t
+ (u · ∇)u= − 1

�
∇p (2)

@e
@t
+ (u · ∇)e= − p

�
∇ · u (3)

@�
@t
+ (u · ∇)�=0 (4)

3. NUMERICAL METHOD

We develop a stable and accurate Eulerian scheme for propagation of strong blast waves. The
governing equations (1)–(4) are spilt into the advection phase and the non-advection phase in
the same way as the original CIP scheme [21, 22]. The fractional step procedure is introduced
for the stability of the scheme. The time-stepping algorithm is shown as follows. The time
advance from the nth step to the (n+1)th step consists of the following procedure. The depen-
dent variables of the nth time step is integrated to the intermediate step denoted as the symbol
∗ by solving the advection equation. Then the variables are advanced to the (n+1)th step by
solving the non-advection equation. The above procedure is often categorized into fraction-
ally stepped semi-Lagrangian. Because we need better coupling between the pressure and the
velocity for the pro�le with a steep gradient in the non-advection phase, we adapt a staggered
grid con�guration for the variable de�nition points as illustrated in Figure 1. In the follow-
ing subsection, the detail explanations of each phase are described by the one-dimensional
equation for simplicity. We de�ne the symbols f ≡ (�; u; e; �) and fx ≡ (�x; ux; ex; �x) and the
subscript x denotes the spatial derivative of the variable. The superscript indicates the time
step, for example fn+1 indicating the value at the time step tn+1 = tn +�t, where the �t is
the time step interval.

3.1. Advection phase

For the advection phase, the equations are shown as follows:

@f
@t
+ u

@
@x
f =0 (5)

@fx
@t
+ u

@fx
@x
= − @u

@x
fx (6)

The CIP scheme uses a semi-Lagrangian procedure and the dependent variables after the
advection f ∗ are obtained by shifting the pro�le by the distance u�t. The pro�le is described
by the cubic Hermite interpolation constructed by f and fx. The original CIP scheme makes
a little undershoot and overshoot near the contact discontinuity. The undershoot of the pro�le
with 1000 times density jump happens a negative density in the low-density side. In calling
the equation of state from a density and an internal energy, the negative density causes the
fatal error. In order to avoid it, we use the rational function CIP (RCIP) scheme [23, 24] with
monotone preserving for the density and the internal energy. The intermediate density �∗ and
�∗
x are obtained by substituting x − u�t into the rational function pro�le F(x),

�∗=F(x − u�t) (7)
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Figure 1. (a) Illustration of the variable de�nitions on the staggered grid in one-dimensional
case; and (b) two-dimensional case.

�∗
x =

@
@x
F(x − u�t) (8)

The internal energy e∗ and e∗x are also obtained by the same way as the density. For the
velocity u∗ and u∗

x , we use the normal cubic Hermite interpolation used in the original CIP,
since the monotonicity of the pro�le is not required.

3.2. Non-advection phase

Near the explosion source, the density changes drastically from the solid to almost vacuum
one, and the �ow becomes very unstable. The sound waves should be stably calculated with
high accuracy. We replace the �nite di�erence method used in the original CIP scheme to
the interpolated di�erential operator (IDO) scheme [25]. We derive the equations for non-
advection phase as follows:

@f
@t
=

(
−�ux;−px + qx�

;−p+ q
�

ux

)
(9)

@fx
@t
=
@
@x

(
−�ux;−px + qx�

;−p+ q
�

ux

)
(10)

For the time integration, three-stage Runge–Kutta method [26] is used and the time integration
of f and fx from the intermediate step to the (n+ 1)th step are shown as follows:

f ∗1 = f ∗ + 2
3�tf

∗
t ; f ∗1

x = f ∗
x +

2
3�tf

∗
xt (11)

f ∗2 = f ∗ + 2
3�tf

∗1
t ; f ∗2

x = f ∗
x +

2
3�tf

∗1
xt (12)

f n+1 = f ∗ +
�t
8
(2f ∗ + 3f ∗1

t + 3f ∗2
t ); f n+1x = f ∗

x +
�t
8
(2f ∗ + 3f ∗1

xt + 3f
∗2
xt ) (13)

The scalar variables �; e; p are de�ned at the grid point i (at the position xi). The velocity u
is de�ned at the grid point i + 1=2 (at the position xi + 1

2�x and �x= xi+1 − xi). The time
derivatives ft and fxt can be described by

�t; i= − �iux; i (14)
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ut; i+(1=2) = − px; i+(1=2) + qx; i+(1=2)
�i+(1=2)

(15)

et; i= − pi + qi
�i

ux; i (16)

�xt; i= − �x; iux; i − �iuxx; i (17)

uxt; i+(1=2) = − pxx; i+(1=2) + qxx; i+(1=2)
�i+(1=2)

+
px; i+(1=2) + qx; i+(1=2)

�i+(1=2)

�x; i+(1=2)
�i+(1=2)

(18)

ext; i= − px; i + qx; i
�i

ux; i − pi + qi
�i

uxx; i +
pi + qi
�i

�x; i
�i
ux; i (19)

where q stands for von Neumann–Richtmyer’s arti�cial viscosity [27] shown in the following
form:

q=

⎧⎪⎨
⎪⎩
CL

(
�+ 1
2
��u2 − �Cs�u

)
; �u¡0

0; �u¿0
(20)

where �u= ui+(1=2) − ui−(1=2) is negative for the compression region, Cs is the sound speed
and CL is the coe�cient of arti�cial viscosity. The spatial pro�le of f between grids is
approximated by the cubic Hermite interpolation again. For �i+(1=2) and �x; i+(1=2) required in
(15) and (18), the density pro�le is constructed by the function F(x) between xi and xi+1

F(x)= a(x − xi)3 + b(x − xi)2 + �x; i(x − xi) + �i (21)

Fx(x)=3a(x − xi)2 + 2b(x − xi) + �x; i (22)

a=
�x; i + �x; i+1

�x2
+
2(�i − �i+1)

�x3
(23)

b=
3(�i+1 − �i)

�x2
− 2�x; i + �x; i+1

�x
(24)

We can obtain the values for �i+(1=2) and �x; i+(1=2) by substituting x= xi + (�x=2) into F(x),

�i+(1=2) =F
(
xi +

�x
2

)
= a

(
�x
2

)3
+ b

(
�x
2

)2
+ �x; i

(
�x
2

)
+ �i (25)

�x; i+(1=2) =Fx

(
xi +

�x
2

)
=3a

(
�x
2

)2
+ 2b

(
�x
2

)
+ �x; i (26)

In order to interpolate the velocity derivatives ux; i and uxx; i required in (14) and (17), the
function G(x) between xi−(1=2) and xi+(1=2) is similarly constructed,

G(x)= c(x − xi−(1=2))3 + d(x − xi−(1=2))2 + ux; i−(1=2)(x − xi−(1=2)) + ui−(1=2) (27)

Gx(x)=3c(x − xi−(1=2))2 + 2d(x − xi−(1=2)) + ux; i−(1=2) (28)

c=
ux; i−(1=2) + ux; i+(1=2)

�x2
+
2(ui−(1=2) − ui+(1=2))

�x3
(29)
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d=
3(ui+(1=2) − ui−(1=2))

�x2
− 2ux; i−(1=2) + ux; i+(1=2)

�x
(30)

By substituting x= xi into G(x), we obtain

ux; i=Gx(xi)=3c
(
�x
2

)2
+ 2d

(
�x
2

)
+ ux; i−(1=2) (31)

uxx; i=Gxx(xi)=6c
(
�x
2

)
+ 2d (32)

The time integration of non-advection term by three-stage Runge–Kutta method is performed
by substituting (14)–(19) into (11) and (13).

3.3. Extension of the scheme to multi-dimensional case

It is a simple procedure to extend the scheme to multi-dimensional case. The multi-dimensional
procedure of the CIP scheme of the advection phase is shown in Reference [28], where the
TYPE-C interpolation employs the dependent variables f, fx, fy and fxy in two-dimensional
case and f, fx, fy, fz, fxy, fyz, fzx and fxyz in three-dimensional case. The multi-dimensional
interpolation was done by repetitive use of the one-dimensional interpolation. Also in the non-
advection phase, the interpolation function is constructed by the same usage of the dependent
variable. For example, when we obtain the higher derivative fxxy, we construct the function
Fy(x) with fy and fxy instead of � and �x in the x direction in Equations (20)–(23), and
take second di�erentiation to have fxxy=(@2=@x2)Fy(x). For the derivative fxyy, the function
Fx(x) is constructed with fx and fxy in the y direction. By introducing fxy in two-dimensional
case and fxy, fxz, fyz and fxyz in three-dimensional case, the multi-dimensional interpolation
procedure is closed self-consistently.

3.4. Accuracy of fractional method

In the propagation of blast waves, the accuracy of numerical scheme is of great importance.
We adapt the fractional step procedure and the equation is split into the advection and the
non-advection phase. The accuracy of the CIP scheme in the advection phase has third-order
both in time and space [29]. The IDO scheme used in the non-advection phase also has
third-order accuracy in time and space. We are afraid that the fractional time step procedure
reduces the time accuracy to �rst order. The accuracy of the numerical result depends on
which �t or �x. The time step �t is determined by CFL condition in our calculation and
small enough, so that �x is dominant for the accuracy of the numerical result. By using
the fractional step procedure, although the time accuracy reduces to �rst order, the numerical
result of our scheme has third-order accuracy in space.

4. EXAMINATION OF THE SCHEME FOR STRONG SHOCK WAVES DRIVEN BY
HIGH-DENSE AND HIGH-PRESSURE GAS EXPANSION

First, the accuracy of the scheme is con�rmed by the one-dimensional plane shock tube
problem with thousands times density di�erence. Next, in order to examine the scheme, we
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Figure 2. Numerical results of shock tube (solid lines) in comparison with analytic
solutions (dashed lines) at t0 = 0 �s, t1 = 20 �s, t2 = 40 �s, t3 = 60 �s, t4 = 80 �s and

t5 = 100 �s: (a) density pro�les; and (b) pressure pro�les.

apply it to the long-distance propagation of a spherical shock driven by the local energy
source.

4.1. Extremely strong shock wave in one-dimensional planer coordinate system

The shock tube problem is one of the most fundamental problems for all the schemes solv-
ing shock wave propagation. In the left-hand side region (0m6x60:5m), a high density
of 1630:0 kg=m3 and a high pressure of 2:085× 109 Pa are set and the standard air of the
density 1:225 kg=m3 and the pressure 1:013× 105 Pa �lls the region of the right-hand side
(0:5m¡x¡1m). The ideal gas equation of state is used with the ratio of speci�c heat �=1:4.
The total grid number Nx=2000 is assigned for the region (0m6x61m), and the code is
run with the parameters of the CFL number of 0.1 and the arti�cial viscosity coe�cient CL
of 2.0.
The comparisons between the numerical results and the analytic solutions for the density

and the pressure pro�les at the time of 0; 20; 40; 60; 80 and 100ms are shown in Figure 2.
The solid lines show the numerical results and the dashed lines show the analytic solutions.
In the density pro�les, no overshoots and undershoots appear in the vicinity of the contact

discontinuity from �=52:5(51:3) to 7:3(7:0) kg=m3, where the numbers inside the parenthesis
indicate the analytic solutions. At the shock wave, the density jump holds six times ahead
of the shock of the theoretical value (� + 1)=(� − 1). In the pressure pro�les, the jump at
the shock wave reaches 166:8(161:9) times ahead of the shock pressure. Although the shock
speed of 3:92(4:03)m=s is slightly small, it is understood that the numerical solutions shows
quite good agreement with the analytic solutions in the severe case of the shock tube problem.

4.2. Free explosion into the air in one-dimensional spherical coordinate system

The explosion with the spherical shock propagation into the free air driven by a local energy
release is called free explosion, which is a typical benchmark test of one-dimensional blast
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Figure 4. Peak overpressure in the air as function of the shock radius (dashed line and dash–doted line)
in comparison with the experimental data (solid line).

wave propagation. Initially, a 1 kg trinitrotoluene (TNT) of the state after the detonation
is located in the standard air as the energy source. In the TNT region within the radius
0:0527m, the density of 1630:0 kg=m3, the internal energy of 4:29× 106 J=kg and the pressure
of 8:15× 109 Pa are set and the outside air has the same condition as the previous section. The
JWL equation of state is applied to the TNT gas region. The code is run with the parameters
of the CFL number of 0.1 and the arti�cial viscosity coe�cient CL of 2.0. The density and
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the pressure pro�les of the numerical results with the uniform mesh �r=0:0005m at the
time of 0:5; 1:0; 2:5; 5:0 and 10:0ms are shown in Figure 3. The secondary shock waves are
generated by the closer of the central void due to the rarefaction wave. In Figure 3(b), the
secondary shock appears clearly at the time t=5 and 10ms.
We de�ne the overpressure �P=p − p0, where p0 is the undisturbed air pressure of

1:013× 105 Pa. The peak of the overpressure as a function of the shock radius rshock is shown
in Figure 4. The solid line indicates Baker’s experimental result [30]. We execute two cases of
the numerical simulation for the region of 06r610m with the grid number of Nr =10000
and 20 000. The dashed line and the dash–doted line represent the numerical results with
�r=0:0025m (Nr =10000) and �r=0:0005m (Nr =20000), respectively.
The numerical simulation can trace the experimental result very well over the wide region

of the spherical shock propagation. It is also found that the simulation with �ner mesh size
gives better result.

5. EXAMINATION OF THE SEDOV–TAYLOR BLAST WAVE IN TWO-DIMENSIONAL
CYLINDRICAL COORDINATE

The Sedov–Taylor blast wave solution [31–34] is well known to be a good benchmark test to
study a strong explosion problem. The self-similar solution in the spherical geometry describes
the shock wave driven by a point source explosion into a uniform medium. In order to check
the convergence rate and the spherical symmetry of our calculation results, we examine this
problem in the two-dimensional cylindrical (r; z) geometry. We set the analytic pro�le of
the Sedov–Taylor solution of the time t0 = 0:96 �s for the point source of 3:2MJ which is
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Figure 5. The pressure pro�les (solid lines) in comparison with analytic solutions (dashed lines) at the
time t0, t1 = t0 + 5 �s, t2 = t0 + 15 �s and t3 = t0 + 40 �s.
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Figure 6. The pressure contours of the Sedov–Taylor blast wave problem at the time t0,
t1 = t0 + 5 �s; t2 = t0 + 15 �s and t3 = t0 + 40 �s.

corresponding to the 1 kg TNT, as the initial pro�le of the density, the pressure and the velocity
u and v. The expanding process is calculated by our code for the area of 06r60:4m and
06z60:4m. The time-evolving analytical solution is set for the central region R60:01m to
avoid the singularity, where R=

√
r2 + z2 is the distance from the centre. The code is run

with the CFL number of 0.2 and the arti�cial viscosity coe�cient CL of 2.0. The comparisons
between the numerical results and the analytic solutions for the pressure pro�les on the line
r= z at the time t0, t0 + 5 �s, t0 + 15 �s and t0 + 40 �s are shown in Figure 5. The solid
lines indicate the numerical results with 400× 400 mesh, the dashed lines are the analytic
solutions. The pressure contours of the numerical results are shown in Figure 6. It is found
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Table I. Errors from the analytic solution for the Sedov problem.

Mesh (Test) Error

100× 100 (Test 0) E0 = 2:37× 10−1

200× 200 (Test 1) E1 = 3:08× 10−2

400× 400 (Test 2) E2 = 3:92× 10−3

that the numerical results keep the spherical symmetry and they show good agreement with
the analytic solutions.
The calculations of 100× 100 and 200× 200 mesh are also carried out to estimate the

convergence rate measured by the E=(1=N )�(|PC − PA|=PA), where N is the grid number
inside the shock wave and the subscripts C and A mean the calculated and analytical pressures,
respectively. The errors from the analytic solution of E0, E1 and E2 are shown in Table I
and we have the convergency E0=E1 = 7:7 and E1=E2 = 7:8. It is con�rmed that the scheme
has the third-order accuracy 7.8–23 in space. We also check the spherical symmetry for the
100× 100 calculation of t0 + 40 �s. The deviation from the spherical pro�le is less than 0.1%
for the shock position and the other iso-surfaces of the pressure. The spherical symmetry of
our calculation is well kept on the orthogonal mesh.

6. MULTI-DIMENSIONAL SIMULATION FOR THE BLAST WAVE PROPAGATION
AROUND THE MAGAZINE

Explosives are often kept in the magazine-like storage space built under the ground or the
slope of the mountains. It is necessary to estimate the damage of human and buildings for
the explosion accident in such a storage space. The detonation gas produced by the explo-
sion propagates in the outlet direction multiply re�ecting at the magazine inner wall and
�nally erupts into the air. The shock waves expand spherically, however the erupted gas has
faster velocity than the sound velocity and continues to drive the shock waves. The shock
strength depends on the propagation direction, and they are di�racted at the outlet edge or
the outside buildings, so that multi-dimensional blast wave simulations are needed. Many
experimental studies have also been done for a mock of the underground magazine. We fol-
low the experiments by two- and three-dimensional numerical simulations and compare with
the experimental data.

6.1. Two-dimensional simulation for the blast wave propagation around the magazine
driven by the 0.1 kg pentolite explosion in cylindrical coordinate

The simulation for the blast wave driven by the 0:1 kg pentolite is performed in the two-
dimensional cylindrical coordinate where the z-axis is chosen to be the axial direction of the
magazine and the radial direction is denoted as r. The schematic of the system is shown in
Figure 7(a). A mock of the underground magazine is a hollow tube whose one side is closed
as shown in Figure 7(b).
In the initial condition, the gas of the state just after the detonation is set as the energy

source in the region of −0:95m6z6− 0:0908m and 0:0m6r60:022m. The gas has the
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Figure 7. Computational domain of two-dimensional cylindrical coordinate: (a) a schematic of magazine
with measurement points; and (b) details inside a magazine with 0:1 kg pentolite.

density of 1640:0 kg=m3, internal energy of 5:225× 106 J=kg and the pressure of 7:67× 109 Pa,
and employs the JWL equation of state. The undisturbed air has the same density and pressure
as that of Section 4. The total grid number of Nr ×Nz=600× 1120 is assigned to the area
of 1:5m× 2:8m and the mesh size is �x=�z=0:0025m. The magazine of 0:1m in radius,
1:0m in length and 0:11m in thickness is implemented as the rigid wall boundary in the
simulation. The code is run with the CFL number of 0.1 and the arti�cial viscosity coe�cient
CL of 2.0.
The expansion of the detonation product gas in the con�ned space makes the �ow turbulent

due to multiple interactions with the magazine wall. In the numerical result, the front of the
blast wave reaches the outlet at the time 0:39ms. The contour plots of the density and pressure
pro�les at the time of 0:45; 1:12 and 2:31ms are shown in Figure 8. When the detonation gas
erupts from the magazine outlet, the front velocity of the blast wave rapidly decreases due
to switching to three-dimensional expansion from one dimension. The shock wave in the air
is detached from the detonation product gas and starts to propagate spherically as shown in
Figure 8(a1) and (b1). The spherically expanding front of the primary shock wave into the
air is described well in all the contour plots. The contact discontinuity between the air and
the detonation product gas becomes clear in the density pro�les of the later time Figure 8(a2)
and (a3). The Kelvin–Helmholtz instability drives the turbulence of the detonation product
gas. At the time of 1:12ms, the low-density void appears due to the rapid expansion in Fig-
ure 8(a2), and the secondary shock waves are generated in closing void region. The complex
shock waves are found in the middle of the pressure pro�le in Figure 8(b3). The axial erup-
tion of the detonation product gas keeps faster velocity than the sound velocity of the air and
pushes the shock wave ahead. The shock front is swelled in the axial direction as shown in
Figure 8(a2).
In the experiment [35], the pressure histories were measured on the ground at several points

keeping 1m distance from the outlet with various angles of 1:8, 28, 60 and 85◦ to the z-axis.
The overpressure histories at each point are shown in Figure 9. The dashed lines show the
numerical results and we compare with the experimental data indicated by the solid lines.
In each Figure, the sudden jumps of the overpressure mean the arrival of the primary shock
wave. Many small peaks after the jump come from the secondary shock waves. The arrival
time of the primary shock is slightly delayed, however the peak and the decay time of the
overpressure are in good agreement with the experimental data.
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Figure 8. Blast wave propagation of two-dimensional simulation results at 0:45; 1:12 and 2:31ms: (a1)
density contours between 1.0 and 10:0 kg=m3 in every 1:0 kg=m3; (b1) pressure contours between 0.5 and
3:5MPa in every 0:5MPa; (a2) density contours between 0.5 and 4:0 kg=m3 in every 0:25 kg=m3; (b2)
pressure contours between 0.6 and 8:0MPa in every 0:2MPa; (a3) density contours between 0.1 and
2:0 kg=m3 in every 0:05 kg=m3; and (b3) pressure contours between 0.4 and 2:0MPa in every 0:1MPa.

6.2. Three-dimensional simulation for the blast wave propagation around the magazine
driven by the 32 kg TNT explosion in Cartesian coordinate

The three-dimensional blast wave simulation is performed on the same condition with the
open-air mock experiment of the 32 kg TNT explosion of the underground magazine which
was done in the exercises �eld of Japan Ground Self Defense Force in 2003 [36]. The heap
with an earth was constructed and the magazine was horizontally embedded. The pyramid
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Figure 9. Overpressure history of two-dimensional simulation results at measurement
points (dashed line) in comparison with experimental results (solid line): (a) �=1:8◦;

(b) �=28◦; (c) �=60◦; and (d) �=85◦.

shape has the base area of 10m× 10m and the height of 4:4m and the magazine size is
5:0m in length and 1:8m in diameter. In the experiment, the peaks of the pressure history
were measured at the several points on the ground with the distance of 22 and 36m from the
magazine outlet in various directions taking the angles of 0; 60; 120 and 160◦ from the z-axis.
The schematic of them is shown in Figure 10(a).
We set the x–z plane on the ground and the y-axis in the vertical direction and the

origin of the coordinate system is located at the magazine outlet. It is assumed that the
phenomena are symmetric due to the symmetric geometries of all the objects, so that we
calculate only a half of the computational domain in the x direction. The grid number of
Nx ×Ny ×Nz=180× 180× 450 is assigned to the domain 0m6x640m, −20m6z645m,
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Figure 10. Computational domain of three-dimensional Cartesian coordinate: (a) a schematic
of magazine with measurement points; and (b) a schematic of non-uniform Cartesian

grid covering the computational domain.

y

x

y

zz
x

40

40

45

-15

(b)(a)

Figure 11. Blast wave propagation of three-dimensional simulation results at t=51:28ms:
(a) contour plots of the density on the z–x and the z–y plane in the range of 0.5–1:35 kg=m3

in every 0:01 kg=m3; and (b) iso-surface plot of the volume fraction of 0:1 and the pressure
of 1:05× 105 Pa in the range of 63.2–115:6 kPa.

0m6y660m in the Cartesian grid with non-uniform intervals. The �ne meshes of �x=
�y=�z=0:1m are arranged inside the magazine and around the outlet, and the distant
meshes have larger size to �x=�y=�z=0:4m as shown in Figure 10(b).
The simulation was executed on the PC-Cluster of Intel Xeon 2:2GHz× 40 with

Myrinet2000 interconnection at Research Centre for Explosion Safety, National Institute of
Advanced Industrial Science and Technology (AIST). It makes parallel computation possible
that our numerical scheme is easily implemented to domain decomposition. The mesh reso-
lution of �x=�y=�z=0:1m inside the magazine is too large for the size of 32 kg TNT,
so that we calculate the propagation of the blast wave by using two-dimensional cylindrical
simulation. When the front of the blast wave reaches the outlet, the two-dimensional result is
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Figure 12. Overpressure history of three-dimensional simulation results at measurement points (solid
lines and dashed lines) in comparison with experimental results (square symbols): (a) �=0◦;

(b) �=60◦; (c) �=120◦; and (d) �=160◦.

planted in the three-dimensional Cartesian grid as the initial condition. The region outside the
heap is �lled with the air of the same parameters in the previous section. The rigid bodies
are assumed for the heap with the magazine and the ground. The three-dimensional code is
run with the CFL number of 0.2 and the arti�cial viscosity coe�cient CL of 2.0.
The density contour and the pressure iso-surface of the simulation result at the time of

51:28ms are displayed in Figure 11(a) and (b). Almost spherical shock wave is described
also in the three-dimensional simulation and it is qualitatively understood that the shock is
stronger in the forward direction. The distribution of the detonation product gas is found in
front of the magazine outlet and the interface to the air evolves unstably.
Figure 12 shows the history of the overpressure of the numerical results in comparison with

the experimental data indicated by the square marks.
The same feature with the two-dimensional simulation is that the primary shock has the

strongest pressure in the axial direction. It is found that the peaks and the arrival times of
the shock is coincident with the experiment within 25% errors. In spite of large distances
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from the outlet, the errors are seems to be quite small. In such far distance, the primary
shock wave is followed by the rarefaction wave and the overpressures decrease to negative
in time. In the three-dimensional simulation, the geometrical shape of the heap is accurately
taken into consideration and unstable behaviour of the detonation product gas is di�erent from
two-dimensional simulation.
We discuss the mesh size and the computational domain size of the three-dimensional

simulation from the view point of the scaling law. There is a similarity for the strength of
blast wave with the scaling of M−1=3, where M is the mass of the explosives. The mesh size of
�x=0:4m for 32 kg TNT is normalized to 1 kg TNT and reduced to 0:031m=kg1=3. The scaled
distance of 40m corresponds to 12m=kg1=3. In the previous two-dimensional simulation with
0:1 kg pentolite, the mesh size of 0:0025m is scaled to 0:0054m=kg1=3 and the computation
domain is reduced to 2m=kg1=3. It is understood that the two-dimensional simulation uses about
1=6 times �ner mesh for a smaller computational domain than those of the three-dimensional
simulation, and gives us the better result.

7. CONCLUSIONS

For the simulation of strong blast waves, a high-accurate numerical scheme was presented.
We introduce not only the values of the density, the velocity and the internal energy but also
the special gradients of them as dependent variables. The fractional step procedure splits the
compressible �uid equation into the advection phase and non-advection phase. The monotone
preserving RCIP scheme is used for the density and the internal energy in the advection phase
to avoid negative values, and the IDO scheme is adapted with three-stage Runge–Kutta time
integration in the non-advection phase to describe the sound wave accurately. It is noticed
that in both the phases, the schemes are based on the cubic Hermite interpolations constructed
by the value and the gradient, and the overall numerical accuracy of the scheme keeps third
order in space.
The applicability of the scheme to severe conditions is checked by the one-dimensional

shock tube problem with the initial density and pressure jumps of thousands between left- and
right-hand side. We also examine a well-known benchmark test for a long-distance propagation
of the spherical shock driven by the free explosion from the local energy source. Both the
results show enough good agreements with the analytic solution and the experimental data.
Two- and three-dimensional simulations are performed for the blast waves driven by the
explosion in the underground magazine. It is found that the numerical results successfully
reproduce the pressure history measured at the several monitoring points on the ground.
It is concluded that the scheme proposed in this paper is quite available to solve the

compressible �uid equation and applicable to the simulation of strong blast waves. Possible
damage estimations of the blast wave will be given by the simulation based on our numerical
scheme.
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